Obtain the binomial expansion of \(( 1 - x ) ^ { - 1 }\) up to and including the term in \(x ^ { 2 }\).
Hence, or otherwise, show that
$$\frac { 1 } { 3 - 2 x } \approx \frac { 1 } { 3 } + \frac { 2 } { 9 } x + \frac { 4 } { 27 } x ^ { 2 }$$
for small values of \(x\).
Obtain the binomial expansion of \(\frac { 1 } { ( 1 - x ) ^ { 2 } }\) up to and including the term in \(x ^ { 2 }\).
Given that \(\frac { 2 x ^ { 2 } - 3 } { ( 3 - 2 x ) ( 1 - x ) ^ { 2 } }\) can be written in the form \(\frac { A } { ( 3 - 2 x ) } + \frac { B } { ( 1 - x ) } + \frac { C } { ( 1 - x ) ^ { 2 } }\), find the values of \(A , B\) and \(C\).
Hence find the binomial expansion of \(\frac { 2 x ^ { 2 } - 3 } { ( 3 - 2 x ) ( 1 - x ) ^ { 2 } }\) up to and including the term in \(x ^ { 2 }\).