AQA C3 2015 June — Question 4 3 marks

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2015
SessionJune
Marks3
TopicComposite & Inverse Functions

4 The functions f and g are defined by $$\begin{array} { l l } \mathrm { f } ( x ) = 5 - \mathrm { e } ^ { 3 x } , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { 2 x - 3 } , & \text { for } x \neq 1.5 \end{array}$$
  1. Find the range of f.
  2. The inverse of f is \(\mathrm { f } ^ { - 1 }\).
    1. Find \(\mathrm { f } ^ { - 1 } ( x )\).
    2. Solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = 0\).
  3. Find an expression for \(\operatorname { gg } ( x )\), giving your answer in the form \(\frac { a x + b } { c x + d }\), where \(a , b , c\) and \(d\) are integers.
    [0pt] [3 marks]