AQA C1 2009 June — Question 7

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2009
SessionJune
TopicInequalities

7 The curve \(C\) has equation \(y = k \left( x ^ { 2 } + 3 \right)\), where \(k\) is a constant.
The line \(L\) has equation \(y = 2 x + 2\).
  1. Show that the \(x\)-coordinates of any points of intersection of the curve \(C\) with the line \(L\) satisfy the equation $$k x ^ { 2 } - 2 x + 3 k - 2 = 0$$
  2. The curve \(C\) and the line \(L\) intersect in two distinct points.
    1. Show that $$3 k ^ { 2 } - 2 k - 1 < 0$$
    2. Hence find the possible values of \(k\).