5.
Figure 4
\includegraphics[max width=\textwidth, alt={}, center]{94d9432d-1723-4549-ad5e-d4be0f5fd083-009_609_1026_301_516}
A block of wood \(A\) of mass 0.5 kg rests on a rough horizontal table and is attached to one end of a light inextensible string. The string passes over a small smooth pulley \(P\) fixed at the edge of the table. The other end of the string is attached to a ball \(B\) of mass 0.8 kg which hangs freely below the pulley, as shown in Figure 4. The coefficient of friction between \(A\) and the table is \(\mu\). The system is released from rest with the string taut. After release, \(B\) descends a distance of 0.4 m in 0.5 s . Modelling \(A\) and \(B\) as particles, calculate
- the acceleration of \(B\),
- the tension in the string,
- the value of \(\mu\).
- State how in your calculations you have used the information that the string is inextensible.