5. (a) Use integration by parts to show that
$$\int _ { 0 } ^ { \frac { \pi } { 4 } } x \sec ^ { 2 } x \mathrm {~d} x = \frac { 1 } { 4 } \pi - \frac { 1 } { 2 } \ln 2$$
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{615ec68b-3a32-4309-bb54-acf39ed09f96-03_793_1138_524_354}
\end{figure}
The finite region \(R\), bounded by the equation \(y = x ^ { \frac { 1 } { 2 } } \sec x\), the line \(x = \frac { \pi } { 4 }\) and the \(x\)-axis is shown in Fig. 1. The region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
(b) Find the volume of the solid of revolution generated.
(c) Find the gradient of the curve with equation \(y = x ^ { \frac { 1 } { 2 } } \sec x\) at the point where \(x = \frac { \pi } { 4 }\).