Edexcel C4 — Question 8

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
TopicDifferential equations

8. Liquid is pouring into a container at a constant rate of \(20 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) and is leaking out at a rate proportional to the volume of the liquid already in the container.
  1. Explain why, at time \(t\) seconds, the volume, \(V \mathrm {~cm} ^ { 3 }\), of liquid in the container satisfies the differential equation $$\frac { \mathrm { d } V } { \mathrm {~d} t } = 20 - k V$$ where \(k\) is a positive constant. The container is initially empty.
  2. By solving the differential equation, show that $$V = A + B \mathrm { e } ^ { - k t }$$ giving the values of \(A\) and \(B\) in terms of \(k\). Given also that \(\frac { \mathrm { d } V } { \mathrm {~d} t } = 10\) when \(t = 5\),
  3. find the volume of liquid in the container at 10 s after the start. Materials required for examination
    Mathematical Formulae (Green) Items included with question papers
    Nil Paper Reference(s)
    6666 \section*{Advanced Level} \section*{Monday 23 January 2006 - Afternoon} Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.