OCR AS Pure 2017 Specimen — Question 10

Exam BoardOCR
ModuleAS Pure (AS Pure Mathematics)
Year2017
SessionSpecimen
TopicBinomial Theorem (positive integer n)
TypeStandard binomial expansion

10
  1. Write down and simplify the first four terms in the expansion of \(( x + y ) ^ { 7 }\).
    Give your answer in ascending powers of \(x\).
  2. Given that the terms in \(x ^ { 2 } y ^ { 5 }\) and \(x ^ { 3 } y ^ { 4 }\) in this expansion are equal, find the value of \(\frac { x } { y }\).
  3. A hospital consultant has seven appointments every day. The number of these appointments which start late on a randomly chosen day is denoted by \(L\).
    The variable \(L\) is modelled by the distribution \(\mathrm { B } \left( 7 , \frac { 3 } { 8 } \right)\). Show that, in this model, the hospital consultant is equally likely to have two appointments start late or three appointments start late.