5 One end of a light inextensible string of length 0.8 m is attached to a fixed point, \(O\). The other end is attached to a particle \(P\) of mass \(1.2 \mathrm {~kg} . P\) hangs in equilibrium at a distance of 1.5 m above a horizontal plane. The point on the plane directly below \(O\) is \(F\).
\(P\) is projected horizontally with speed \(3.5 \mathrm {~ms} ^ { - 1 }\). The string breaks when \(O P\) makes an angle of \(\frac { 1 } { 3 } \pi\) radians with the downwards vertical through \(O\) (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{493f11f4-e25c-4eeb-a0ab-20ec6d7a7a7d-3_776_910_1242_244}
- Find the magnitude of the tension in the string at the instant before the string breaks.
- Find the distance between \(F\) and the point where \(P\) first hits the plane.