OCR Further Pure Core 1 2018 December — Question 2

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2018
SessionDecember
TopicPolar coordinates

2 The equation of the curve shown on the graph is, in polar coordinates, \(r = 3 \sin 2 \theta\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
\includegraphics[max width=\textwidth, alt={}, center]{8315a796-0e7d-464f-8604-9fe3ab7af359-2_470_657_913_319}
  1. The greatest value of \(r\) on the curve occurs at the point \(P\).
    1. Show that \(\theta = \frac { 1 } { 4 } \pi\) at the point \(P\).
    2. Find the value of \(r\) at the point \(P\).
    3. Mark the point \(P\) on the copy of the graph in the Printed Answer Booklet.
  2. In this question you must show detailed reasoning. Find the exact area of the region enclosed by the curve.