| Exam Board | OCR |
| Module | Further Pure Core 2 (Further Pure Core 2) |
| Year | 2018 |
| Session | September |
| Topic | Standard Integrals and Reverse Chain Rule |
2
7
- 1
\end{array} \right) + \mu \left( \begin{array} { c }
1
- 2
4
\end{array} \right) .$$
(ii) Find the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
(iii) Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
2 In this question you must show detailed reasoning.
(i) Find \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } 2 \tan x \mathrm {~d} x\) giving your answer in the form \(\ln p\).
(ii) Show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } 2 \tan x \mathrm {~d} x\) is undefined explaining your reasoning.