3 A particle \(P\) of mass 3.5 kg is attached to one end of a light elastic string of natural length 0.8 m and modulus of elasticity 75 N . The other end of the string is attached to a fixed point \(O\). The particle rotates in a horizontal circle with a constant angular velocity of \(3 \mathrm { rad } \mathrm { s } ^ { - 1 }\). The centre of the circle is vertically below \(O\). The magnitude of the tension in the string is \(T \mathrm {~N}\) and the length of the extended string is \(L \mathrm {~m}\) (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{a8c9d007-e67f-4637-9e74-630ba9a91442-3_460_424_447_817}
- By considering the acceleration of \(P\), show that \(T = 31.5 L\).
- Write down another relationship between \(T\) and \(L\).
- Find the value of \(T\) and the value of \(L\).
- Find the angle that the string makes with the downwards vertical through \(O\).