OCR Further Pure Core 1 2018 March — Question 6

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2018
SessionMarch
TopicSecond order differential equations

6 One end of a light inextensible string is attached to a small mass. The other end is attached to a fixed point \(O\). Initially the mass hangs at rest vertically below \(O\). The mass is then pulled to one side with the string taut and released from rest. \(\theta\) is the angle, in radians, that the string makes with the vertical through \(O\) at time \(t\) seconds and \(\theta\) may be assumed to be small. The subsequent motion of the mass can be modelled by the differential equation $$\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - 4 \theta$$
  1. Write down the general solution to this differential equation.
  2. Initially the pendulum is released from rest at an angle of \(\theta _ { 0 }\). Find the particular solution to the equation in this case.
  3. State any limitations on the model.