1
\includegraphics[max width=\textwidth, alt={}, center]{083d3e44-1e42-461f-aa8d-a1a22047a47e-02_611_1351_260_397}
The diagram shows a velocity-time graph which models the motion of a car. The graph consists of six straight line segments. The car accelerates from rest to a speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) over a period of 5 s , and then travels at this speed for a further 20 s . The car then decelerates to a speed of \(6 \mathrm {~ms} ^ { - 1 }\) over a period of 5 s . This speed is maintained for a further \(( T - 30 ) \mathrm { s }\). The car then accelerates again to a speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) over a period of \(( 50 - T ) \mathrm { s }\), before decelerating to rest over a period of 10 s .
- Given that during the two stages of the motion when the car is accelerating, the accelerations are equal, find the value of \(T\).
- Find the total distance travelled by the car during the motion.