OCR Further Additional Pure AS 2017 December — Question 4

Exam BoardOCR
ModuleFurther Additional Pure AS (Further Additional Pure AS)
Year2017
SessionDecember
TopicGroups

4
  1. The binary operation is defined on \(\mathbb { Z }\) by \(a\) b \(b = a + b - a b\) for all \(a , b \in \mathbb { Z }\). Prove that is associative on \(\mathbb { Z }\). The operation ∘ is defined on the set \(A = \{ 0,2,3,4,5,6 \}\) by \(a \circ b = a + b - a b ( \bmod 7 )\) for all \(a , b \in A\).
  2. Complete the Cayley table for \(\left( A , { } ^ { \circ } \right)\) given in the Printed Answer Booklet.
  3. Prove that \(( A , \circ )\) is a group. You may assume that the operation is associative.
  4. List all the subgroups of \(( A , \circ )\).