| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2026 |
| Session | January |
| Topic | Vectors 3D & Lines |
2
- 3
1
\end{array} \right) \text { where } \lambda \text { is a scalar parameter. }$$
The point \(P\) lies on \(l _ { 1 }\). Given that \(\overrightarrow { O P }\) is perpendicular to \(l _ { 1 }\), calculate the coordinates of \(P\).
(ii) Relative to a fixed origin \(O\), the line \(l _ { 2 }\) is given by the equation
$$l _ { 2 } : \mathbf { r } = \left( \begin{array} { r }