SPS SPS FM Pure 2023 September — Question 7 8 marks

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2023
SessionSeptember
Marks8
TopicReciprocal Trig & Identities

7. (a) Prove the identity \(\frac { \cos x } { \sec x + 1 } + \frac { \cos x } { \sec x - 1 } \equiv 2 \cot ^ { 2 } x\)
[0pt] [3 marks]
(b) Hence, solve the equation $$\frac { \cos \left( 2 \theta + \frac { \pi } { 3 } \right) } { \sec \left( 2 \theta + \frac { \pi } { 3 } \right) + 1 } = \cot \left( 2 \theta + \frac { \pi } { 3 } \right) - \frac { \cos \left( 2 \theta + \frac { \pi } { 3 } \right) } { \sec \left( 2 \theta + \frac { \pi } { 3 } \right) - 1 }$$ in the interval \(0 \leq \theta \leq 2 \pi\), giving your values of \(\theta\) to three significant figures where appropriate.
[0pt] [5 marks]
[0pt] [BLANK PAGE] \section*{8. A population of meerkats is being studied.} The population is modelled by the differential equation $$\frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { 1 } { 22 } P ( 11 - 2 P ) , \quad t \geqslant 0 , \quad 0 < P < 5.5$$ where \(P\), in thousands, is the population of meerkats and \(t\) is the time measured in years since the study began. Given that there were 1000 meerkats in the population when the study began, determine the time taken, in years, for this population of meerkats to double.
[0pt] [BLANK PAGE]