SPS SPS FM Pure 2024 January — Question 7

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2024
SessionJanuary
TopicComplex Numbers Argand & Loci

7.
  • The point \(P\) represents a complex number \(z\) on an Argand diagram such that
$$| z - 6 \mathrm { i } | = 2 | z - 3 |$$
  1. Show that, as \(z\) varies, the locus of \(P\) is a circle, stating the radius and the coordinates of the centre of this circle.
    (6) The point \(Q\) represents a complex number \(z\) on an Argand diagram such that $$\arg ( z - 6 ) = - \frac { 3 \pi } { 4 }$$
  2. Sketch, on the same Argand diagram, the locus of \(P\) and the locus of \(Q\) as \(z\) varies.
  3. Find the complex number for which both \(| z - 6 \mathrm { i } | = 2 | z - 3 |\) and \(\arg ( z - 6 ) = - \frac { 3 \pi } { 4 }\)
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]