5.
A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { 1 } = 8 \quad \text { and } \quad u _ { n + 1 } = u _ { n } + 3 .$$
- Show that \(u _ { 5 } = 20\).
- The \(n\)th term of the sequence can be written in the form \(u _ { n } = p n + q\). State the values of \(p\) and \(q\).
- State what type of sequence it is.
- Find the value of \(N\) such that \(\sum _ { n = 1 } ^ { 2 N } u _ { n } - \sum _ { n = 1 } ^ { N } u _ { n } = 1256\).
[0pt]
[BLANK PAGE]