A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q2
SPS SPS FM 2022 November — Question 2
Exam Board
SPS
Module
SPS FM (SPS FM)
Year
2022
Session
November
Topic
Sequences and series, recurrence and convergence
2.
Show that \(\frac { 1 } { \sqrt { r + 2 } + \sqrt { r } } \equiv \frac { \sqrt { r + 2 } - \sqrt { r } } { 2 }\).
Hence find an expression, in terms of \(n\), for $$\sum _ { r = 1 } ^ { n } \frac { 1 } { \sqrt { r + 2 } + \sqrt { r } }$$
State, giving a brief reason, whether the series \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { \sqrt { r + 2 } + \sqrt { r } }\) converges.
[0pt] [BLANK PAGE]
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8