SPS SPS FM Pure 2023 February — Question 4

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2023
SessionFebruary
TopicVectors: Lines & Planes

4. The plane \(\Pi\) has equation $$\mathbf { r } = \left( \begin{array} { l } 3
3
2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
2
1 \end{array} \right) + \mu \left( \begin{array} { l } 2
0
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that vector \(2 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\) is perpendicular to \(\Pi\).
  2. Hence find a Cartesian equation of \(\Pi\). The line \(l\) has equation $$\mathbf { r } = \left( \begin{array} { r } 4
    - 5
    2 \end{array} \right) + t \left( \begin{array} { r } 1
    6
    - 3 \end{array} \right)$$ where \(t\) is a scalar parameter.
    The point \(A\) lies on \(l\).
    Given that the shortest distance between \(A\) and \(\Pi\) is \(2 \sqrt { 29 }\)
  3. determine the possible coordinates of \(A\).
    [0pt] [BLANK PAGE]