| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2023 |
| Session | September |
| Topic | Proof by induction |
10. The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l } 2 & 2
0 & 1 \end{array} \right)\). Prove by induction that, for \(n \geq 1\),
$$\mathbf { M } ^ { n } = \left( \begin{array} { c c }
2 ^ { n } & 2 ^ { n + 1 } - 2
0 & 1
\end{array} \right) .$$
[BLANK PAGE]