| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2023 |
| Session | October |
| Topic | Sequences and series, recurrence and convergence |
5. (i) Use the method of differences to show that
$$\sum _ { r = 1 } ^ { n } \left\{ ( r + 1 ) ^ { 3 } - r ^ { 3 } \right\} = ( n + 1 ) ^ { 3 } - 1$$
(ii) Show that \(( r + 1 ) ^ { 3 } - r ^ { 3 } \equiv 3 r ^ { 2 } + 3 r + 1\).
(iii) Use the results in parts (i) and (ii) and the standard result for \(\sum _ { r = 1 } ^ { n } r\) to show that
$$3 \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 2 } n ( n + 1 ) ( 2 n + 1 )$$
[BLANK PAGE]
[0pt]
[BLANK PAGE]