SPS SPS SM Pure 2023 June — Question 5

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2023
SessionJune
TopicArea Under & Between Curves

5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f953fd1c-447f-4e97-a42a-5264c053fda0-10_684_689_260_639} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = e ^ { \frac { 1 } { 5 } x ^ { 2 } }\) for \(x \geq 0\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(y\)-axis, the \(x\)-axis, and the line with equation \(x = 2\) The table below shows corresponding values of \(x\) and \(y\) for \(y = e ^ { \frac { 1 } { 5 } x ^ { 2 } }\)
\(x\)00.511.52
\(y\)1\(e ^ { 0.05 }\)\(e ^ { 0.2 }\)\(e ^ { 0.45 }\)\(e ^ { 0.8 }\)
  1. Use the trapezium rule, with all the values of \(y\) in the table, to find an estimate for the area of \(R\), giving your answer to 2 decimal places.
  2. Use your answer to part (a) to deduce an estimate for
    1. \(\quad \int _ { 0 } ^ { 2 } \left( 4 + e ^ { \frac { 1 } { 5 } x ^ { 2 } } \right) d x\)
    2. \(\quad \int _ { 1 } ^ { 3 } e ^ { \frac { 1 } { 5 } ( x - 1 ) ^ { 2 } } d x\)
      giving your answers to 2 decimal places.