| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2023 |
| Session | June |
| Topic | Complex Numbers Argand & Loci |
8. (i) Shade on an Argand diagram the set of points
$$\{ z \in \mathbb { C } : | z - 4 \mathrm { i } | \leqslant 3 \} \cap \left\{ z \in \mathbb { C } : - \frac { \pi } { 2 } < \arg ( z + 3 - 4 \mathrm { i } ) \leqslant \frac { \pi } { 4 } \right\}$$
The complex number \(w\) satisfies \(| w - 4 i | = 3\).
(ii) Find the maximum value of \(\arg w\) in the interval \(( - \pi , \pi ]\).
Give your answer in radians correct to 2 decimal places.
[0pt]
[BLANK PAGE]