SPS SPS SM 2022 October — Question 9

Exam BoardSPS
ModuleSPS SM (SPS SM)
Year2022
SessionOctober
TopicSequences and Series

9. A sequence of numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$a _ { n + 1 } = \frac { k \left( a _ { n } + 2 \right) } { a _ { n } } \quad n \in \mathbb { N }$$ where \(k\) is a constant.
Given that
  • the sequence is a periodic sequence of order 3
  • \(a _ { 1 } = 2\)
    1. show that
$$k ^ { 2 } + k - 2 = 0$$
  • For this sequence explain why \(k \neq 1\)
  • Find the value of $$\sum _ { r = 1 } ^ { 80 } a _ { r }$$ [BLANK PAGE]