1.
The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { l l } 4 & 1
0 & 2 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r } 1 & 1
0 & - 1 \end{array} \right)\).
- Find \(\mathbf { A } + 3 \mathbf { B }\).
- Show that \(\mathbf { A } - \mathbf { B } = k \mathbf { I }\), where \(\mathbf { I }\) is the identity matrix and \(k\) is a constant whose value should be stated.