| Exam Board | SPS |
| Module | SPS FM (SPS FM) |
| Year | 2022 |
| Session | October |
| Topic | Sequences and Series |
4. A sequence is defined by \(u _ { 1 } = 3 , u _ { n + 1 } = u _ { n } ^ { r }\) for \(n \geq 1\).
a) In the case where \(r = \frac { 6 } { 5 }\) find the smallest value of \(n\) such that \(u _ { n } > 10 ^ { 50 }\).
A convergent sequence is defined by \(v _ { 1 } = u _ { 1 } , v _ { n + 1 } = u _ { n + 1 } v _ { n }\) for \(n \geq 1\).
b) Given that the limit of this sequence is greater than 100 , find the range of possible values of \(r\), giving your answer in exact form.
c) Evaluate the infinite product:
$$2 \times \sqrt [ 3 ] { 4 } \times \sqrt [ 3 ] { \sqrt [ 3 ] { 16 } } \times \sqrt [ 3 ] { \sqrt [ 3 ] { \sqrt [ 3 ] { 256 } } } \cdots$$
[Question 4 - Continued]
[0pt]
[Question 4 - Continued]
[0pt]
[Question 4 - Continued]