A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q10
SPS SPS SM Pure 2020 October — Question 10
Exam Board
SPS
Module
SPS SM Pure (SPS SM Pure)
Year
2020
Session
October
Topic
Addition & Double Angle Formulae
10.
Prove that $$\cos ^ { 2 } \left( \theta + 45 ^ { \circ } \right) - \frac { 1 } { 2 } ( \cos 2 \theta - \sin 2 \theta ) \equiv \sin ^ { 2 } \theta .$$
Hence solve the equation $$6 \cos ^ { 2 } \left( \frac { 1 } { 2 } \theta + 45 ^ { \circ } \right) - 3 ( \cos \theta - \sin \theta ) = 2$$ for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\).
This paper
(7 questions)
View full paper
Q1
Q2
Q6
Q7
Q8
Q9
Q10