SPS SPS FM Statistics 2021 January — Question 4

Exam BoardSPS
ModuleSPS FM Statistics (SPS FM Statistics)
Year2021
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypePDF from CDF

4. The continuous random variable \(X\) has cumulative distribution function given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x \leqslant 0
k \left( x ^ { 3 } - \frac { 3 } { 8 } x ^ { 4 } \right) & 0 < x \leqslant 2
1 & x > 2 \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 1 } { 2 }\)
  2. Showing your working clearly, use calculus to find
    1. \(\mathrm { E } ( X )\)
    2. the mode of \(X\)