SPS SPS SM Pure 2021 May — Question 5

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2021
SessionMay
TopicImplicit equations and differentiation

5. A curve has equation \(x ^ { 3 } - 3 x ^ { 2 } y + y ^ { 2 } + 1 = 0\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 x y - 3 x ^ { 2 } } { 2 y - 3 x ^ { 2 } }\).
  2. Find the equation of the normal to the curve at the point \(( 1,2 )\).
    [0pt] [BLANK PAGE] \section*{6. In this question you must show detailed reasoning.} A circle touches the lines \(y = \frac { 1 } { 2 } x\) and \(y = 2 x\) at \(( 6,3 )\) and \(( 3,6 )\) respectively.
    \includegraphics[max width=\textwidth, alt={}, center]{f9e0bca6-c2a3-4868-b38b-942ceabd4992-14_515_524_338_790} Find the equation of the circle.
    [0pt] [BLANK PAGE]