SPS SPS SM Pure 2021 May — Question 7

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2021
SessionMay
TopicGeometric Sequences and Series

7. A curve has parametric equations $$x = 2 \sin t , \quad y = \cos 2 t + 2 \sin t$$ for \(- \frac { 1 } { 2 } \pi \leqslant t \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1 - 2 \sin t\) and hence find the coordinates of the stationary point.
  2. Find the cartesian equation of the curve.
  3. State the set of values that \(x\) can take and hence sketch the curve.
    [0pt] [BLANK PAGE] \section*{8. In this question you must show detailed reasoning.} The \(n\)th term of a geometric progression is denoted by \(g _ { n }\) and the \(n\)th term of an arithmetic progression is denoted by \(a _ { n }\). It is given that \(g _ { 1 } = a _ { 1 } = 1 + \sqrt { 5 } , g _ { 3 } = a _ { 2 }\) and \(g _ { 4 } + a _ { 3 } = 0\). Given also that the geometric progression is convergent, show that its sum to infinity is \(4 + 2 \sqrt { 5 }\).
    [0pt] [BLANK PAGE]