SPS SPS SM Pure 2021 June — Question 10

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2021
SessionJune
TopicFactor & Remainder Theorem
TypeIntegration or area using factorised polynomial

10. $$g ( x ) = 2 x ^ { 3 } + x ^ { 2 } - 41 x - 70$$
  1. Use the factor theorem to show that \(\mathrm { g } ( x )\) is divisible by \(( x - 5 )\).
  2. Hence, showing all your working, write \(\mathrm { g } ( x )\) as a product of three linear factors. The finite region \(R\) is bounded by the curve with equation \(y = \mathrm { g } ( x )\) and the \(x\)-axis, and lies below the \(x\)-axis.
  3. Find, using algebraic integration, the exact value of the area of \(R\).
    [0pt] [BLANK PAGE]