OCR MEI Further Mechanics B AS 2021 November — Question 3 3 marks

Exam BoardOCR MEI
ModuleFurther Mechanics B AS (Further Mechanics B AS)
Year2021
SessionNovember
Marks3
TopicCentre of Mass 1

3 In this question you must show detailed reasoning. [In this question you may use the formula: Volume of cone \(= \frac { 1 } { 3 } \times\) base area × height.]
The region between the line \(\mathrm { y } = - 3 \mathrm { x } + 3 \mathrm { a }\), where \(a > 0\), the \(x\)-axis and the \(y\)-axis is rotated about the \(y\)-axis to form a uniform right circular cone C with base radius \(a\).
  1. Show that the centre of mass of C is \(\frac { 3 } { 4 } a\) from its base. The cone C is fixed on top of a uniform cube, B , of edge length \(2 a\), so that there is no overlap. Fig. 3.1 shows a side view of C and B fixed together; Fig. 3.2 shows a view of C and B from above. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{37798594-8cb0-48aa-8401-090f09e25dff-3_570_323_785_246} \captionsetup{labelformat=empty} \caption{Fig. 3.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{37798594-8cb0-48aa-8401-090f09e25dff-3_309_319_982_753} \captionsetup{labelformat=empty} \caption{Fig. 3.2}
    \end{figure} The centre of mass of the combined shape lies on the boundary of C and B .
    The density of \(B\) is not equal to the density of \(C\).
  2. Determine the exact value of \(\frac { \text { density of } \mathrm { C } } { \text { density of } \mathrm { B } }\).
    [0pt] [3]