Edexcel P4 2024 June — Question 6

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2024
SessionJune
TopicConnected Rates of Change

  1. show that \end{itemize} $$\frac { \mathrm { d } A } { \mathrm {~d} \theta } = K ( 1 - \cos \theta )$$ where \(K\) is a constant to be found.
  2. Find, in \(\mathrm { cm } ^ { 2 } \mathrm {~s} ^ { - 1 }\), the rate of increase of the area of the segment when \(\theta = \frac { \pi } { 3 }\) 5. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e583bf92-d6a9-4f1a-b3c8-372afa6e0a0e-10_803_1086_248_493} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a sketch of the curve defined by the parametric equations $$x = t ^ { 2 } + 2 t \quad y = \frac { 2 } { t ( 3 - t ) } \quad a \leqslant t \leqslant b$$ where \(a\) and \(b\) are constants.
    The ends of the curve lie on the line with equation \(y = 1\)
  3. Find the value of \(a\) and the value of \(b\) The region \(R\), shown shaded in Figure 2, is bounded by the curve and the line with equation \(y = 1\)
  4. Show that the area of region \(R\) is given by $$M - k \int _ { a } ^ { b } \frac { t + 1 } { t ( 3 - t ) } \mathrm { d } t$$ where \(M\) and \(k\) are constants to be found.
    1. Write \(\frac { t + 1 } { t ( 3 - t ) }\) in partial fractions.
    2. Use algebraic integration to find the exact area of \(R\), giving your answer in simplest form.