A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q6
CAIE P3 2023 November — Question 6
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2023
Session
November
Topic
Reciprocal Trig & Identities
6
Show that the equation \(\cot ^ { 2 } \theta + 2 \cos 2 \theta = 4\) can be written in the form $$4 \sin ^ { 4 } \theta + 3 \sin ^ { 2 } \theta - 1 = 0$$
Hence solve the equation \(\cot ^ { 2 } \theta + 2 \cos 2 \theta = 4\), for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
5
Q8
Q9
Q10
Q11