CAIE P3 2023 November — Question 6

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2023
SessionNovember
TopicReciprocal Trig & Identities

6
  1. Show that the equation \(\cot ^ { 2 } \theta + 2 \cos 2 \theta = 4\) can be written in the form $$4 \sin ^ { 4 } \theta + 3 \sin ^ { 2 } \theta - 1 = 0$$
  2. Hence solve the equation \(\cot ^ { 2 } \theta + 2 \cos 2 \theta = 4\), for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).