- \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane.]
A smooth uniform sphere \(A\) has mass \(2 m \mathrm {~kg}\) and another smooth uniform sphere \(B\), with the same radius as \(A\), has mass \(3 m \mathrm {~kg}\).
The spheres are moving on a smooth horizontal plane when they collide obliquely.
Immediately before the collision the velocity of \(A\) is \(( 3 \mathbf { i } + 3 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and the velocity of \(B\) is \(( - 5 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
At the instant of collision, the line joining the centres of the spheres is parallel to \(\mathbf { i }\).
The coefficient of restitution between the spheres is \(\frac { 1 } { 4 }\)
- Find the velocity of \(B\) immediately after the collision.
- Find, to the nearest degree, the size of the angle through which the direction of motion of \(B\) is deflected as a result of the collision.