2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{86a37170-046f-46e5-9c8c-06d5f98ca4fe-06_287_846_246_612}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A van of mass 600 kg is moving up a straight road which is inclined at an angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 1 } { 15 }\). The van is towing a trailer of mass 150 kg . The van is attached to the trailer by a towbar which is parallel to the direction of motion of the van and the trailer, as shown in Figure 1.
The resistance to the motion of the van from non-gravitational forces is modelled as a constant force of magnitude 200 N .
The resistance to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 100 N .
The towbar is modelled as a light rod.
The engine of the van is working at a constant rate of 12 kW .
Find the tension in the towbar at the instant when the speed of the van is \(9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)