- A smooth uniform sphere \(P\) has mass 0.3 kg . Another smooth uniform sphere \(Q\), with the same radius as \(P\), has mass 0.2 kg .
The spheres are moving on a smooth horizontal surface when they collide obliquely. Immediately before the collision the velocity of \(P\) is \(( 4 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and the velocity of \(Q\) is \(( - 3 \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
At the instant of collision, the line joining the centres of the spheres is parallel to \(\mathbf { i }\).
The kinetic energy of \(Q\) immediately after the collision is half the kinetic energy of \(Q\) immediately before the collision.
- Find
- the velocity of \(P\) immediately after the collision,
- the velocity of \(Q\) immediately after the collision,
- the coefficient of restitution between \(P\) and \(Q\),
carefully justifying your answers.
- Find the size of the angle through which the direction of motion of \(P\) is deflected by the collision.