Edexcel FS2 2023 June — Question 8

Exam BoardEdexcel
ModuleFS2 (Further Statistics 2)
Year2023
SessionJune
TopicProbability Generating Functions
TypeMoment generating function problems

  1. A bag contains a large number of marbles of which an unknown proportion, \(p\), is yellow.
Three random samples of size \(n\) are taken, and the number of yellow marbles in each sample, \(Y _ { 1 } , Y _ { 2 }\) and \(Y _ { 3 }\), is recorded. Two estimators \(\hat { \mathrm { p } } _ { 1 }\) and \(\hat { \mathrm { p } } _ { 2 }\) are proposed to estimate the value of \(p\) $$\begin{aligned} & \hat { p } _ { 1 } = \frac { Y _ { 1 } + 3 Y _ { 2 } - 2 Y _ { 3 } } { 2 n }
& \hat { p } _ { 2 } = \frac { 2 Y _ { 1 } + 3 Y _ { 2 } + Y _ { 3 } } { 6 n } \end{aligned}$$
  1. Show that \(\hat { \mathrm { p } } _ { 1 }\) and \(\hat { \mathrm { p } } _ { 2 }\) are both unbiased estimators of \(p\)
  2. Find the variance of \(\hat { p } _ { 1 }\) The variance of \(\hat { \mathrm { p } } _ { 2 }\) is \(\frac { 7 p ( 1 - p ) } { 18 n }\)
  3. State, giving a reason, which is the better estimator. The estimator \(\hat { p } _ { 3 } = \frac { Y _ { 1 } + a Y _ { 2 } + 3 Y _ { 3 } } { b n }\) where \(a\) and \(b\) are positive integers.
  4. Find the pair of values of \(a\) and \(b\) such that \(\hat { \mathrm { p } } _ { 3 }\) is a better unbiased estimator of \(p\) than both \(\hat { \mathrm { p } } _ { 1 }\) and \(\hat { \mathrm { p } } _ { 2 }\)
    You must show all stages of your working.