Edexcel CP1 2022 June — Question 8

Exam BoardEdexcel
ModuleCP1 (Core Pure 1)
Year2022
SessionJune
TopicVolumes of Revolution

  1. (a) Given
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad n \in \mathbb { N }$$ show that $$32 \cos ^ { 6 } \theta \equiv \cos 6 \theta + 6 \cos 4 \theta + 15 \cos 2 \theta + 10$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f237de57-ed6d-4bea-8bb0-1b4e5b66d7da-22_218_357_653_331} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f237de57-ed6d-4bea-8bb0-1b4e5b66d7da-22_307_824_621_897} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 1 shows a solid paperweight with a flat base.
Figure 2 shows the curve with equation $$y = H \cos ^ { 3 } \left( \frac { x } { 4 } \right) \quad - 4 \leqslant x \leqslant 4$$ where \(H\) is a positive constant and \(x\) is in radians.
The region \(R\), shown shaded in Figure 2, is bounded by the curve, the line with equation \(x = - 4\), the line with equation \(x = 4\) and the \(x\)-axis. The paperweight is modelled by the solid of revolution formed when \(R\) is rotated \(\mathbf { 1 8 0 } ^ { \circ }\) about the \(x\)-axis. Given that the maximum height of the paperweight is 2 cm ,
(b) write down the value of \(H\).
(c) Using algebraic integration and the result in part (a), determine, in \(\mathrm { cm } ^ { 3 }\), the volume of the paperweight, according to the model. Give your answer to 2 decimal places.
[0pt] [Solutions based entirely on calculator technology are not acceptable.]
(d) State a limitation of the model.