- A particle \(P\) moves on the \(x\)-axis. At time \(t\) seconds the velocity of \(P\) is \(v \mathrm {~ms} ^ { - 1 }\) in the direction of \(x\) increasing, where
$$v = \frac { 1 } { 2 } \left( 3 \mathrm { e } ^ { 2 t } - 1 \right) \quad t \geqslant 0$$
The acceleration of \(P\) at time \(t\) seconds is \(a \mathrm {~ms} ^ { - 2 }\)
- Show that \(a = 2 v + 1\)
- Find the acceleration of \(P\) when \(t = 0\)
- Find the exact distance travelled by \(P\) in accelerating from a speed of \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)