Edexcel FS2 AS 2024 June — Question 3

Exam BoardEdexcel
ModuleFS2 AS (Further Statistics 2 AS)
Year2024
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeCompare mean and median using probability

  1. The continuous random variable \(Y\) has probability density function
$$f ( y ) = \left\{ \begin{array} { c c } \frac { 1 } { 24 } ( y + 2 ) ( 4 - y ) & 0 \leqslant y \leqslant 3
0 & \text { otherwise } \end{array} \right.$$
  1. Show that the mode of \(Y\) is 1 , justifying your reasoning. Given that \(\mathrm { P } ( Y < 1 ) = \frac { 13 } { 36 }\)
  2. determine whether the median of \(Y\) is less than, equal to, or greater than 2 Give a reason for your answer. Given that \(\mathrm { E } \left( Y ^ { 2 } \right) = \frac { 213 } { 80 }\)
  3. find, using algebraic integration, \(\operatorname { Var } ( 2 Y )\)