- The discrete random variable \(X\) has probability distribution given by
| \(x\) | - 1 | 0 | 1 | 2 | 3 |
| \(P ( X = x )\) | \(c\) | \(a\) | \(a\) | \(b\) | \(c\) |
The random variable \(Y = 2 - 5 X\)
Given that \(\mathrm { E } ( \mathrm { Y } ) = - 4\) and \(\mathrm { P } ( \mathrm { Y } \geqslant - 3 ) = 0.45\)
- find the probability distribution of X .
Given also that \(\mathrm { E } \left( \mathrm { Y } ^ { 2 } \right) = 75\)
- find the exact value of \(\operatorname { Var } ( \mathrm { X } )\)
- Find \(\mathrm { P } ( \mathrm { Y } > \mathrm { X } )\)
\section*{Q uestion 2 continued}