Edexcel FS1 AS 2023 June — Question 3

Exam BoardEdexcel
ModuleFS1 AS (Further Statistics 1 AS)
Year2023
SessionJune
TopicPoisson Distribution
TypePoisson parameter from given probability

  1. A machine produces cloth. Faults occur randomly in the cloth at a rate of 0.4 per square metre.
The machine is used to produce tablecloths, each of area \(A\) square metres. One of these tablecloths is taken at random. The probability that this tablecloth has no faults is 0.0907
  1. Find the value of \(A\) The tablecloths are sold in packets of 20
    A randomly selected packet is taken.
  2. Find the probability that more than 1 of the tablecloths in this packet has no faults. A hotel places an order for 100 tablecloths each of area \(A\) square metres.
    The random variable \(X\) represents the number of these tablecloths that have no faults.
  3. Find
    1. \(\mathrm { E } ( X )\)
    2. \(\operatorname { Var } ( X )\)
  4. Use a Poisson approximation to estimate \(\mathrm { P } ( X = 10 )\) It is claimed that a new machine produces cloth with a rate of faults that is less than 0.4 per square metre. A piece of cloth produced by this new machine is taken at random.
    The piece of cloth has area 30 square metres and is found to have 6 faults.
  5. Stating your hypotheses clearly, use a suitable test to assess the claim made for the new machine. Use a \(5 \%\) level of significance.
  6. Write down the \(p\)-value for the test used in part (e).