Edexcel FS1 AS 2019 June — Question 4

Exam BoardEdexcel
ModuleFS1 AS (Further Statistics 1 AS)
Year2019
SessionJune
TopicDiscrete Random Variables
TypeProbability distributions with parameters

  1. The discrete random variable \(X\) has probability distribution
\(x\)- 3- 1124
\(\mathrm { P } ( X = x )\)\(q\)\(\frac { 7 } { 30 }\)\(\frac { 7 } { 30 }\)\(q\)\(r\)
where \(q\) and \(r\) are probabilities.
  1. Write down, in terms of \(q , \mathrm { P } ( X \leqslant 0 )\)
  2. Show that \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { 7 } { 15 } + 13 q + 16 r\) Given that \(\mathrm { E } \left( X ^ { 3 } \right) = \mathrm { E } \left( X ^ { 2 } \right) + \mathrm { E } ( 6 X )\)
  3. find the value of \(q\) and the value of \(r\)
  4. Hence find \(\mathrm { P } \left( X ^ { 3 } > X ^ { 2 } + 6 X \right)\)