Edexcel FP2 AS 2022 June — Question 3

Exam BoardEdexcel
ModuleFP2 AS (Further Pure 2 AS)
Year2022
SessionJune
TopicGroups

  1. (i) Let \(G\) be a group of order 5291848
Without performing any division, use proof by contradiction to show that \(G\) cannot have a subgroup of order 11
(ii) (a) Complete the following Cayley table for the set \(X = \{ 2,4,8,14,16,22,26,28 \}\) with the operation of multiplication modulo 30
\(\times _ { 30 }\)2481416222628
24816282142226
4822814
8162814
1428221684
16241416
2214264216
26221448
282614288
A copy of this table is given on page 11 if you need to rewrite your Cayley table.
(b) Hence determine whether the set \(X\) with the operation of multiplication modulo 30 forms a group.
[0pt] [You may assume multiplication modulo \(n\) is an associative operation.] Only use this grid if you need to rewrite your Cayley table.
\(\times _ { 30 }\)2481416222628
24816282142226
4822814
8162814
1428221684
16241416
2214264216
26221448
282614288
(Total for Question 3 is 9 marks)