Edexcel FP2 AS 2018 June — Question 2

Exam BoardEdexcel
ModuleFP2 AS (Further Pure 2 AS)
Year2018
SessionJune
TopicGroups

2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{285b6ae9-ca8f-46b7-b4ed-a3310fe4ebe6-04_568_634_248_717} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows an equilateral triangle \(A B C\). The lines \(x , y\) and \(z\) and their point of intersection, \(O\), are fixed in the plane. The triangle \(A B C\) is transformed about these fixed lines and the fixed point \(O\). The lines \(x , y\) and \(z\) each pass through a vertex of the triangle and the midpoint of the opposite side. The transformations \(I , X , Y , Z , R _ { 1 }\) and \(R _ { 2 }\) of the plane containing triangle \(A B C\) are defined as follows:
  • I: Do nothing
  • \(X\) : Reflect in the line \(x\)
  • \(Y\) : Reflect in the line \(y\)
  • \(Z\) : Reflect in the line \(z\)
  • \(R _ { 1 }\) : Rotate \(120 ^ { \circ }\) anticlockwise about \(O\)
  • \(R _ { 2 }\) : Rotate \(240 ^ { \circ }\) anticlockwise about \(O\)
The operation * is defined as 'followed by' on the set \(T = \left\{ I , X , Y , Z , R _ { 1 } , R _ { 2 } \right\}\).
For example, \(X { } ^ { * } Y\) means a reflection in the line \(x\) followed by a reflection in the line \(y\).
    1. Complete the Cayley table on page 5 Given that the associative law is satisfied,
    2. show that \(T\) is a group under the operation *
  1. Show that the element \(R _ { 2 }\) has order 3
  2. Explain why \(T\) is not a cyclic group.
  3. Write down the elements of a subgroup of \(T\) that has order 3
    \multirow{2}{*}{}Second transformation
    *I\(X\)\(Y\)\(Z\)\(R _ { 1 }\)\(R _ { 2 }\)
    \multirow{6}{*}{First Transformation}I
    \(X\)I\(Z\)
    \(Y\)
    \(Z\)
    \(R _ { 1 }\)\(Y\)
    \(R _ { 2 }\)
    \footnotetext{Turn over for a spare table if you need to re-write your Cayley table } \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Only use this grid if you need to re-write your Cayley table}
    \multirow{2}{*}{}Second transformation
    *I\(X\)\(Y\)Z\(R _ { 1 }\)\(R _ { 2 }\)
    \multirow{6}{*}{First Transformation}I
    XIZ
    Y
    Z
    \(R _ { 1 }\)\(Y\)
    \(R _ { 2 }\)
    \end{table}