- (a) Use the substitution \(\mathrm { t } = \tan \left( \frac { \mathrm { x } } { 2 } \right)\) to show that
$$\sec x - \tan x \equiv \frac { 1 - t } { 1 + t } \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , n \in \mathbb { Z }$$
(b) Use the substitution \(\mathrm { t } = \tan \left( \frac { \mathrm { x } } { 2 } \right)\) and the answer to part (a) to prove that
$$\frac { 1 - \sin x } { 1 + \sin x } \equiv ( \sec x - \tan x ) ^ { 2 } \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , n \in \mathbb { Z }$$
\section*{Q uestion 1 continued}