1.
$$\mathbf { A } = \left( \begin{array} { r r }
4 & - 1
7 & 2
- 5 & 8
\end{array} \right) \quad \mathbf { B } = \left( \begin{array} { r r r }
2 & 3 & 2
- 1 & 6 & 5
\end{array} \right) \quad \mathbf { C } = \left( \begin{array} { r r r }
- 5 & 2 & 1
4 & 3 & 8
- 6 & 11 & 2
\end{array} \right)$$
Given that \(\mathbf { I }\) is the \(3 \times 3\) identity matrix,
- show that there is an integer \(k\) for which
$$\mathbf { A B } - 3 \mathbf { C } + k \mathbf { I } = \mathbf { 0 }$$
stating the value of \(k\)
- explain why there can be no constant \(m\) such that
$$\mathbf { B A } - 3 \mathbf { C } + m \mathbf { I } = \mathbf { 0 }$$
- Show how the matrix \(\mathbf { C }\) can be used to solve the simultaneous equations
$$\begin{aligned}
- 5 x + 2 y + z & = - 14
4 x + 3 y + 8 z & = 3
- 6 x + 11 y + 2 z & = 7
\end{aligned}$$ - Hence use your calculator to solve these equations.