WJEC Further Unit 3 2019 June — Question 6

Exam BoardWJEC
ModuleFurther Unit 3 (Further Unit 3)
Year2019
SessionJune
TopicCircular Motion 2

6. The diagram shows a rollercoaster at an amusement park where a car is projected from a launch point \(O\) so that it performs a loop before instantaneously coming to rest at point \(C\). The car then performs the same journey in reverse.
\includegraphics[max width=\textwidth, alt={}, center]{b430aa50-27e3-46f7-afef-7b8e75d46e1f-5_677_1733_552_166} The loop section is modelled by considering the track to be a vertical circle of radius 10 m and the car as a particle of mass \(m\) kg moving on the inside surface of the circular loop. You may assume that the track is smooth. At point \(A\), which is the lowest point of the circle, the car has velocity \(u \mathrm {~ms} ^ { - 1 }\) such that \(u ^ { 2 } = 60 g\). When the car is at point \(B\) the radius makes an angle \(\theta\) with the downward vertical.
  1. Find, in terms of \(\theta\) and \(g\), an expression for \(v ^ { 2 }\), where \(v \mathrm {~ms} ^ { - 1 }\) is the speed of the car at \(B\).
  2. Show that \(R \mathrm {~N}\), the reaction of the track on the car at \(B\), is given by $$R = m g ( 4 + 3 \cos \theta ) .$$
  3. Explain why the expression for \(R\) in part (b) shows that the car will perform a complete loop.
  4. This model predicts that the car will stop at \(C\) at a vertical height of 30 m above \(A\). However, after the car has completed the loop, the track becomes rough and the car only reaches a point \(D\) at a vertical height of 28 m above \(A\). The resistance to motion of the car beyond the loop is of constant magnitude \(\frac { m g } { 32 } \mathrm {~N}\). Calculate the length of the rough track between \(A\) and \(D\).